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Mesenchymal stem cell-based gene therapy for erectile
dysfunction
JH Kim1, HJ Lee2 and YS Song1

Despite the overwhelming success of PDE5 inhibitor (PDE5I), the demand for novel pharmacotherapeutic and surgical options for
ED continues to rise owing to the increased proportion of elderly individuals in the population, in addition to the growing
percentage of ED patients who do not respond to PDE5I. Surgical treatment of ED is associated with many complications, thus
warranting the need for nonsurgical therapies. Moreover, none of the above-mentioned treatments essentially corrects, cures or
prevents ED. Although gene therapy is a promising option, many challenges and obstacles such as local inflammatory response and
random transgene expression, in addition to other safety issues, limit its use at the clinical level. The use of stem cell therapy alone
also has many shortcomings. To overcome these inadequacies, many scientists and clinicians are investigating new gene and stem
cell therapies.
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INTRODUCTION
Penile erection is a complex response requiring functional
integrity of nitrergic nerves, the endothelium and smooth
muscles in the penis.1 The treatment of ED has received much
attention in recent years. The pharmacological approach using
PDE5 inhibitors (PDE5I) is regarded as the first-line treatment for
patients with ED. This treatment is highly effective; however, some
patients require second-line therapy primarily consisting of
intracavernous injections.2 In addition, in diabetes mellitus
(DM)-induced ED and cavernous nerve injury-induced ED, it is
known that limitations in treatment outcomes exist.3

Regarding the success rate of PDE5I in men with concomitant
medical conditions, the lowest value (43%) was found in patients
who underwent radical prostatectomy and the second lowest
value (44%) was found in patients with uncontrolled DM.4–6

Moreover, PDE5I provides only symptomatic relief from ED and
does not offer a cure for the disease. Therefore, it is important to
evaluate other potential treatments including herbs, gene therapy
and stem cell transplantation. Among these, using stem cell
transplantation along with gene therapy is a promising new
approach for the treatment of patients showing limited response
to PDE5I (Table 1).
These strategies include cell-based therapies involving intraca-

vernous injections of mesenchymal stem cells (MSCs) and
therapeutic genes such as the endothelial nitric oxide synthase
(eNOS) gene or the vascular endothelial growth factor (VEGF)
gene, often by using an adenoviral vector.7 MSCs derived from the
bone marrow are capable of transforming into various cell types,
thereby enabling tissue repair and regeneration. Furthermore,
they do not induce local immune reactions and are stable.3

The penis is a potential target tissue for gene therapy because
of its accessibility and the ubiquity of endothelial lined spaces.
Gene therapy is, therefore, a promising therapeutic strategy for

the treatment of ED. Both MSC injection therapy and gene therapy
with eNOS or VEGF have some limitations when used individually.
To overcome these limitations, combinational treatments with
MSCs and gene therapy have been introduced. A novel approach
for the treatment of ED that could prevent random distribution of
the transgene and reduce the possibility of an inflammatory
response involves the use of MSCs, also known as marrow stromal
cells, alone or with ex vivo genetic modification using eNOS.7–10

The aim of this study is to evaluate the status of a
combinational MSC-based gene therapy in ED.

PROPERTIES OF MSCS
It has been shown that MSC injection into the corpus cavernosum
improves erectile functions in diabetic11 and hyperlipidemic12 rat
models, as well as in neurogenic ED models.13

Human MSCs have been isolated from a large number of adult
tissues including bone marrow, adipose tissue and skeletal
muscles.3 MSCs have been of particular interest in the treatment
of ED because relatively easy methods are available for their
acquisition.14

MSCs are capable of self-renewal and differentiation into
various phenotypes.15 However, they also produce characteristic
immunomodulatory, proangiogenic, anti-apoptotic, anti-fibrotic
and anti-inflammatory effects, mainly through the secretion of
bioactive trophic factors.16,17

In addition, MSCs differentiate into multi-lineage cells that can
survive for long periods after autologous transplantation without
inducing an immune response. MSCs express low levels of MHC
class 1 molecules and do not express MHC class 2 molecules,
indicating that they are minimally immunogenic. This has led to
the use of both allogeneic and autologous sources of MSCs in
various preclinical and clinical studies with promising efficacy
and safety data.18 Transplantation of patients’ own autologous
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Table 1. Preclinical trials of stem cell transplantation with gene therapy for the treatment of ED

Authors Animal model Stem cell Gene therapy Transplantation Structural changes Functional outcomes

Gou et al.73 Rat, DM model EPC VEGF165- EPC ICI In VEGF165- EPC-treated group, the corpus
cavernosum showed numerous sites of
neovascularization. Transplanted EPCs showed
cell differentiation into endothelial cells.

Significant effects on improving ICP
in response to CN stimulation.

Qiu et al.72 Rat, DM model MSC VEGF164-
MSC

ICI Higher contents of smooth muscle and endothelium
in the corpus cavernosum in VEGF164-transfected
MSC-treated group.

Significant effects on improving ICP
and peak ICP/MAP ratio in response
to CN stimulation.

Liu et al.99 Rat, DM model ADSC VEGF165-
ADSC

ICI In VEGF165- ADSC-treated group, the percentage of
smooth muscle markers and the number of cells
expressing pericyte markers significantly increased.

Significant effects on improving ICP
and peak ICP/MAP ratio in response
to CN stimulation.

Bivalacqua
et al.37

Rat, aged MSC eNOS-MSC ICI eNOS-MSC-treated group showed improved
endothelium signaling and differentiation into
penile cells expressing endothelial and smooth
muscle markers.

Significant effects on improving ICP,
total ICP and the peak ICP/MAP ratio
in response to CN stimulation.

Ouyang et al.53 Rat, DM model Human USC FGF2-USC ICI The number of cells expressing smooth muscle
markers within the corporal tissue and the
cell/collagen ratio were significantly increased
in the FGF2-USC-treated group.

Significant effects on improving ICP
and peak ICP/MAP ratio in response
to CN stimulation.

Kim et al.66 Rat, nerve injury
model

MSC rAd/hBDNF-
MSC

Injection into MPG A greater extent of preservation of smooth muscle
was observed in rats treated with MSCs infected
with rAd/hBDNF than that observed in mice
treated with MSCs alone.

Significant effects on improving peak
ICP/MAP ratio in response to CN
stimulation.

Bochinski
et al.65

Rat, nerve injury
model

ESC EGFP-BDNF Injection into MPG Neurofilament staining was significantly better
in the experimental groups injected with ESCs.

Significant effects on improving peak
ICP in response to CN stimulation

He et al.85 Rat, DM model MSC KCNMA1-
MSC

ICI Not checked. Significant effects on improving the
peak ICP/MAP ratio in response to CN
stimulation.

Gokce et al.86 Rat, tunica
albugineal fibrosis
model

ADSC ADSCs-IFN Injection into
intraunical space

Various degree of collagen bundle disorganization
and clumping with loss of the typical wavy
appearance and presence of focal areas of
nodule-like clumps of collagen bundles and
tendon-like fibrous connective tissue reduced
Peyronie’s-like manifestations. Decrease in the
expression of tissue inhibitors of metalloproteinases.

Significant effects on improving ICP.
Changes in ICP and peak ICP/MAP
ratio in response to CN stimulation.

Kendrici et al.77 Rat, nerve injury
model

Multipotent
stromal cell

p75dMSC Injection into MPG Surviving engrafted MSCs and p75dMSCs had a
mesodermal (fibroblastic) morphology rather than
a neuronal morphology.

Significant effects on improving ICP
and mean/MAP ratio in response to
CN stimulation.

Abbreviations: ADSC, adipose-derived stem cells; ADSC-IFN, ADSC-expressing human interferon α-2b; DM, diabetes mellitus; EGFP-BDNF, enhanced green fluorescence protein-brain-derived neurotrophic factor;
EPC, endothelial progenitor cells; ESC, embryonic stem cell; FGF, fibroblast growth factor; ICI, intracavernous injection; ICP, intracavernous pressure; MAP, mean arterial pressure; MPG, major pelvis ganglion; MSC,
mesenchymal stem cell; rAd/hBDNF, recombinant adenovirus expressing human brain-derived neurotrophic factor; USC, urine-derived stem cell; VEGF, vascular endothelial growth factor.
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adipose-derived stem cells (ADSCs) can be the best candidate for
clinical application.
MSCs can express smooth muscle and endothelium-specific

markers like α-SMA, calponin, von Willebrand factor and CD31
after transplantation into the corpus cavernosum.19 MSCs can also
secrete a variety of soluble factors with various advantageous
effects including immunomodulation,20 inhibition of fibrosis21 and
apoptosis,22 and enhancement of vascular repair.23,24

MECHANISM
MSC-based cell therapies with or without gene therapy have
similar mechanisms in restoring and recovering erectile function.
The main mechanism underlying recovery from ED lies in the
improvement of functional and histological components. In terms
of identification of stem cell differentiation, no direct evidence has
been described yet25,26 to suggest the importance of paracrine
action as a principal therapeutic mechanism in stem cell treatment
of ED. Zhang et al.27,28 found that the cytokine CXCL5 was
abundantly secreted by cultured stem cells and it exhibited potent
angiogenic and neurotrophic activities in vitro. Besides this
paracrine action of stem cells, the other potent mechanism lies
in the roles of NO and VEGF.
Penile erection is initiated by neuronal nitric oxide synthases

(nNOS) and maintained by eNOS.29 Relaxation of corporal smooth
muscle is essential for normal erectile activity, and accumulated
evidence supports NO as a major mediator of corporal smooth
muscle relaxation and penile erection.30,31 Release of NO from the
endothelium and nitrergic nerves innervating the penile vascu-
lature serves to activate NO-sensitive guanylyl cyclase and
increase penile tissue cyclic guanosine monophosphate (cGMP)
levels. cGMP activates a cGMP-dependent protein kinase (PKG)
and phosphorylation of downstream proteins results in decreased
intracellular calcium concentration and vasodilation.32 The inter-
action of the superoxide anion with NO is responsible for the
decreased NO bioavailability.33–36

Administration of eNOS-transduced MSCs improves the erectile
response to cavernous nerve stimulation by enhancing the release
of endothelium-derived NO.37 Endothelial- and neuronal-derived
NO has a pivotal role in the regulation of erectile physiology in
penile vasculature.32,38,39 Several putative explanations of the
mechanism underlying the upregulation of eNOS expression and
NO release in the corpus cavernosum have been proposed. The
first explanation is that the maintenance of NO-dependent erectile
response in mice lacking the gene for nNOS was a compensatory
upregulation of eNOS to fulfill insufficient nNOS expression. A
more recent explanation for the intact NO-dependent erectile
response in these mice is the existence of nNOS gene variants
resulting from alternative mRNA splicing of the nNOS-beta and
nNOS-gamma alternative translation in exon 1.
However, a paracrine action, possibly the secretion of growth

factors by MSCs to promote NO signaling, may occur after the
transplantation of MSCs.23,24,36,40

Recently, the role of VEGF has been an important issue for DM-
induced ED models. The importance of VEGF in the pathogenesis
of ED is related to the condition in which VEGF receptors are
downregulated.41 Impaired VEGF signaling pathway in the corpus
cavernosum is another key contributing factor to diabetic
endothelial dysfunction.42,43

VEGF leads to hypertrophic and hyperplastic remodeling of the
penile vascular structures. Furthermore, VEGF may also exert anti-
apoptotic effects, protect the endothelium in response to
acetylcholine receptors, restore the levels of sex hormones and
increase the expression of eNOS and stimulate its phosphorylation.3

MSCS AND VEGF GENE THERAPY FOR ED
VEGF is one of several polypeptides with significant angiogenic
activity in vitro and in vivo. A number of VEGF mRNA isoforms are
expressed in both rat and human penises, and the most abundant
form is a variant encoding a 164-amino acid protein.44

VEGF is a cytokine with strong angiogenic properties. It can
stimulate proliferation, delay senescence, suppress apoptosis and
promote survival of various cell types.45 VEGF is known to improve
the survival of transplanted MSCs in a myocardial infarction
model.46

Rogers et al.47 showed that VEGF treatment reversed cavernosal
leakage in venogenic ED, suggesting that intracavernous injection
of the VEGF gene may contribute to preservation of erectile
function in patients. VEGF has been proven to alleviate neurogenic
and vasculogenic ED associated with hypercholesterolemia in
preclinical studies.48

VEGF may provide a protective effect to the endothelium and
smooth muscle in the corpus cavernosum. Yamanaka et al.49

demonstrated that intracavernous injection of VEGF restored
erectile function through inhibition of apoptosis in the corpus
cavernosum of diabetic rats. VEGF has also been shown to
increase the NO-producing activity of endothelial cells, which has
an important role in regulating cavernous smooth muscle
relaxation.50

Low transfection, risk of chromatin integration, the potential
malignant transformation and not tightly regulated gene expres-
sion cause adverse effects. Angiomyolipoma or venous leakage
from the premature vascularization by VEGF may be considered
for clinical trial.51

MSCS AND ENOS GENE THERAPY FOR ED
Many gene therapy strategies have focused on the NO/cGMP
pathway. All three NOS isoforms, endothelial NOS (eNOS),
neuronal NOS (nNOS) and inducible NOS have been used in gene
therapy to improve erectile function. Different viral and non-viral
vectors have been used to transfer the genetic material to the
target cell or tissues, with varying results.52 Deng et al.7 conducted
a series of experiments that showed the feasibility of successfully
transferring the eNOS gene. The gene was inserted in an
adenovirus and MSCs were transduced ex vivo to induce
subsequent protein production without interfering with the
totipotency of the MSCs. The calcitonin gene-related peptide
gene was also expressed in a similar manner.7 These MSCs
infected with adenoviral vectors expressing specific NOS genes
were transplanted into the corpus cavernosum of old rats. Seven
days after the transplantation of transduced MSCs, there was an
improvement in ED and a reduction in the inflammatory reaction.
Finally, intracavernous injection of both wild-type MSCs and gene-
modified MSCs after 21 days increased eNOS expression and
improved ED. Inflammation response and random expression for
the transgene may limit the clinical effects after transplantation.
Bivalacqua et al.37 also confirmed that intracavernous trans-

plantation of unmodified wild-type MSCs improved erectile
function 21 days after injection. The putative mechanisms
involved improved endothelium-derived NO/cGMP signaling as
well as the differentiation of MSCs into penile cells expressing
endothelial and smooth muscle markers.37

MSCS AND FIBROBLAST GROWTH FACTOR GENE THERAPY
FOR ED
Fibroblast growth factors (FGFs) are multifunctional proteins with
a wide variety of functions. They are most commonly mitogens
but also have regulatory, morphological and endocrine effects.53

FGF is also known as a ‘pluripotent’ growth factor because of its
varied interactions with multiple cell types.54,55 One important
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function of FGF1 and FGF2 is the promotion of endothelial cell
proliferation and the physical organization of endothelial cells into
tube-like structures in vitro.56 They induce angiogenesis and
enhance the growth of new blood vessels from pre-existing
vasculature.57 Both FGF1 and FGF2 are more potent angiogenic
factors than is VEGF or platelet-derived growth factor.58 FGF1
expression is mainly localized to the central nervous system, while
FGF2 is expressed in all adult tissues.59,60 In addition, FGF2 is
reported to be more essential than VEGF, epidermal growth factor
and insulin-like growth factor for endothelial differentiation of
MSCs61 because in the absence of VEGF, insulin-like growth factor
or epidermal growth factor, MSCs may also display endothelial
properties when grown in an FGF2-supplemented medium.
Ouyang et al.53 reported that urine-derived stem cells (USCs) or

USCs genetically modified with FGF2 enhance the expression of
endothelial cell markers, smooth muscle contents and improve
neurogenic-mediated erectile responses in type 2 diabetic ED rats.
The improvement in diabetic ED in a rodent model after
administration of USCs or USCs-FGF2 is similar to that observed
with cell therapy using other types of MSCs. Paracrine action of
USCs may have an important role in recruiting resident
endothelial and smooth muscle cells to participate in tissue repair
within the cavernous tissue.

MSCS AND BRAIN-DERIVED GROWTH FACTOR GENE THERAPY
FOR ED
Among the various neurotrophins, brain-derived neurotrophic
factor (BDNF) has an important role in the recovery of ED in a
cavernous nerve injury model.62

Exogenous BDNF could produce a significant outgrowth of
neurons via the Janus Kinase (JAK)/signal transducer and activator
of transcription (STAT) molecular pathway.63,64 In response to
cavernous nerve transection, mRNA and protein expression of
BDNF is significantly elevated in the major pelvis ganglion
in a time-dependent manner by activation of the JAK/STAT
pathway.63,64

Bochinski et al.65 reported that neuronal embryonic stem cells
transduced with enhanced green fluorescence protein-BDNF
showed improved erectile function in a rat model of neurogenic
impotence. Recently, Kim et al.66 reported that erectile function
was preserved to a greater extent after injection with MSCs
infected with recombinant adenovirus expressing human BDNF in
rats with ED caused by cavernous nerve injury.

MSC-BASED GENE THERAPY IN EACH DISEASE MODEL
As men age, a significant weakness in erectile function occurs.3

With increasing age, endothelial cell function is altered; age-
related impairments in erectile function include increased penile
vascular tone, endothelial dysfunction and reduced NO
bioavailability.32,67,68

Bivalacqua et al.37 reported that the administration of MSCs
alone or eNOS-transduced MSCs was associated with increased
eNOS protein expression, calcium-dependent NOS activity and
cGMP levels in aged corporal tissue. These molecular changes in
the penis, mediated by MSC therapy, evoked the relevant
physiological changes in neurogenic-mediated erectile function.
Endothelial dysfunction is a result of diminished phosphoryla-

tion of eNOS. Reduction of eNOS activity and endothelial NO
bioavailability in the aging penile vascular bed have been
reported as causes of age-associated ED.3 It has been reported
that eNOS gene therapy can improve neurogenic or endothelial-
dependent erectile responses in aging rat models.8,32,69,70 In
addition, VEGF gene therapy has been shown to be effective in
aging models. It has been demonstrated that VEGF gene transfer
improved endothelial and smooth muscle areas in the corpus
cavernosum of hypercholesterolemic rats.71

DM is frequently associated with ED, and PDE5Is are commonly
used for treatment of ED in such cases. However, its efficacy is
limited. To overcome these limitations, various therapies including
stem cell therapy and gene therapy have been actively evaluated
in DM-induced ED models. Qiu et al.72 investigated the effects of
bone marrow-derived MSC transplantation on erectile function in
an experimental model. Intracavernous transplantation of MSCs
confirmed its beneficial effects on erectile function through an
increase in the content of the endothelium and smooth muscle in
the corpus cavernosum.
Gou et al.73 examined the effects of transplantation of EPCs that

were transfected with the VEGF165 viral gene in the corpus
cavernosum of diabetic rats with ED.
Transplantation of EPCs transfected with VEGF165 in the corpus

cavernosum of diabetic rats with ED could restore erectile
function. The same group of authors evaluated the effects of
MSC transplantation transfected with the VEGF164 gene through
an adenovirus (Ad-VEGF164) in diabetic mice with ED.72,74

The concentrations of VEGF, nerve growth factor and BDNF
were measured in the bone marrow-MSC-conditioned medium.
MSCs produced detectable levels of VEGF, nerve growth factor
and BDNF, while the intracavernosal transplantation of MSCs
resulted in an improvement of erectile function in diabetic rats.
However, after the injection, a time-dependent reduction in MSCs
occurred. This treatment strategy has also proven effective in
improving nerve regeneration in diabetic rats, most likely through
a mechanism that involves paracrine factors produced by the
MSCs.3,75

Mangir et al.76 recently presented findings similar to those of
previous studies reporting improvement in erectile function after
stem cell injection therapies in animal models of neurogenic
ED.13,77,78

They reported that the use of either autologous or allogeneic
cell sources did not result in an improvement in erectile function.
Although a direct comparison of autologous and allogeneic cells
in this experimental set-up has not been performed yet, both
autologous79 and allogeneic MSCs80,81 were shown to be similarly
effective in animal models of cavernosal nerve injury.
Hyperlipidemia and atherosclerosis are important metabolic

factors,12,82 which cause ED through neuronal and endothelial
dysfunction, leading to a reduction in cavernosal NO levels.12,82

In this field, stem cell transplantation combined with gene therapy
has not been introduced because many studies have
demonstrated successful outcomes with endothelial progenitor
cells or by combining angiopoietin therapy with VEGF gene
therapy.4,25,48,71

OTHER GENE THERAPIES
The gene KCNMA1(ref. 83) encodes pore-forming potassium large-
conductance calcium-activated channel proteins in the cell
membrane. Its expression can cause functional ion channel-
mediated intracellular K+ outflow, membrane hyperpolarization
and a decrease in cell excitability.84 Research about the functions
of KCNMA1 has been mainly focused on maintaining intracellular
and extracellular K+/Ca2+ concentration balance, regulating
vascular smooth muscle cell contraction, and maintaining
membrane potential. He et al.85 reported that KCNMA1 was able
to enhance the positive effect of MSCs in the treatment of
diabetes-associated ED. Recently, Gokce et al.86 reported the
efficacy of intratunical injection of ADSCs expressing human
interferon α-2b (ADSCs-IFN) to decrease fibrosis and restore
erectile function in a rat model of tunica albugineal fibrosis. In
their report, there was more favorable outcome in ADSCc-IFN
group compared with ADSCs-alone group. Recently, Kendrici
et al.77 reported that intracavernous injection of p75-derived
multipotent stromal cells after bilateral cavernous nerve crush
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injury resulted in a significantly higher recovery of erectile
function.
Another potential approach is represented by hMaxi-K gene

transfer in men with ED. hMaxi-K is a ‘naked’ DNA plasmid carrying
human cDNA encoding hSlo (for human slow-poke), the gene for
the alpha, or pore-forming, subunit of the human smooth muscle
Maxi-K channel.3

Induced pluripotent stem cells or induced neural progenitor
cells could be promising options for treatment of ED. However,
no studies have introduced pilot outcomes in preclinical studies.
Recently, direct reprogramming or conversion into neural
progenitor cells using chemical cocktails, induced hypoxia or
diverse transcription factors ((Ascl1, Pou3f2 and Myt1l) have been
introduced.87–89 Direct conversion has the advantage of avoiding
the use of transfecting virus and reprogramming oncogene.
However, no study has been introduced for clinical application.

DISCUSSION
MSCs have the advantage of exhibiting all the characteristics of
stem cells including self-renewal capacity, totipotency and in vivo
tissue regeneration capacity.3 In addition, they can be easily
obtained in large numbers by a single bone marrow aspiration.3

The other advantages of MSC-based cell therapy in ED include
enhanced endothelial nitric oxide (NO) synthase expression,
display of endothelial and smooth muscle cell markers, increased
content of smooth muscle and endothelium in the corpus
cavernosum, enhanced neovascularization in the corpus caverno-
sum, increased content of nNOS-positive nerve fibers in penile
dorsal nerves, inhibition of apoptosis in the corpus cavernosum,
and inhibition of fibrosis and apoptosis.3

The main disadvantages include potential adverse effects, low
transfection efficiency, risk of chromosomal integration and the
potential for malignant transformation.3 MSCs have a limited
survival period; Song et al.90 attempted to immortalize these cells
using a viral vector encoding the myc gene and assessed whether
they maintain the ability to differentiate or mutate into
endothelial or smooth muscle cells.90

The least immunogenic stem cell transplantation could be
achieved by using autologous stem cells. However, even with the
easiest method of stem cell extraction such as in the case of
ADSCs, a surgical procedure is still involved and that, by itself, may
adversely affect the outcome of stem cell transplantation.4

Therefore, more studies need to be conducted using allogeneic
and xenogeneic stem cell transplantations as alternatives.
Although adeno or adeno-associated virus-mediated

gene transfer of eNOS, nNOS, VEGF, BDNF or superoxide
dismutase, or a dominant-negative RhoA mutant can augment
erectile responses in aged or diabetic rat models, the possible
occurrence of an inflammatory response and random expression
of the transgene may limit the clinical utility of these
interventions.8,32,34,35,37,48,69,91–95

Most of the animal models used in the DM study were
streptozotocin-induced rat models of type 1 diabetes, which is
different from type 2 diabetes in many characteristics, including
insulin resistance and body mass index. Moreover, most cases of
diabetes are type 2 diabetes.96,97

Although the adenovirus carrying the VEGF gene can induce
therapeutic angiogenesis, VEGF expression is not under tightly
regulated and might therefore cause unwanted side effects, such
as angioma formation.98 Possible side effects of VEGF need to be
assessed before consideration of these combined stem cell and
gene therapy by clinical trials.
As with other disease treatment settings, the most important

issue is that there are limited long-term longitudinal data of ED
treatment models using MSCs alone or in combination with gene
therapy.

CONCLUSIONS
Experimental studies have revealed that both MSC transplantation
and gene therapy have limitations with respect to their levels of
effectiveness in the treatment of ED when used individually. To
overcome this issue, combination treatment with MSC and gene
therapy using specific transduction has been introduced, and it
has shown favorable outcomes in preclinical studies. This
combined strategy of MSC transplantation and gene therapy
could be a promising option for the treatment of DM-induced and
age-associated ED. MSCs together with gene therapy involving
genes such as eNOS, VEGF and BDNF currently represent a
promising treatment option in the field of vascular regenerative
therapy for ED. However, before considering its potential
applications in clinical settings, its disadvantages and limitations
need to be addressed.
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